Code for Quiz 6 more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in the order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subbset
For health_cos
select (in this order): ticker
, year
, gp
, industry
Extract observations for 2018
Assign output to health_subject
drug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, revenue, gp, industry) %>%
filter(year == 2018)
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - …
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - …
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - …
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - …
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - …
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - …
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - …
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - …
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - …
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - …
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - …
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - …
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - …
Start with drug_cos
Extract observations for the ticker JNJ from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "JNJ")
drug_cos_subset
drug_cos_subset
Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
co_name <- combo_df %>%
distinct(name) %>%
pull()
co_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company ??? is located in ??? and is a member of the ??? industry group.
Start with combo_df
Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin,
revenue, gp, netincome)
Display combo_df_subset
Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal.
grossmargin_check = gp / revenue
Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 9.67e 9
2 2012 0.678 0.161 6.72e10 4.56e10 1.09e10
3 2013 0.687 0.194 7.13e10 4.90e10 1.38e10
4 2014 0.694 0.22 7.43e10 5.16e10 1.63e10
5 2015 0.693 0.22 7.01e10 4.85e10 1.54e10
6 2016 0.697 0.23 7.19e10 5.01e10 1.65e10
7 2017 0.667 0.017 7.64e10 5.10e10 1.30e 9
8 2018 0.668 0.188 8.16e10 5.45e10 1.53e10
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 9.67e 9
2 2012 0.678 0.161 6.72e10 4.56e10 1.09e10
3 2013 0.687 0.194 7.13e10 4.90e10 1.38e10
4 2014 0.694 0.22 7.43e10 5.16e10 1.63e10
5 2015 0.693 0.22 7.01e10 4.85e10 1.54e10
6 2016 0.697 0.23 7.19e10 5.01e10 1.65e10
7 2017 0.667 0.017 7.64e10 5.10e10 1.30e 9
8 2018 0.668 0.188 8.16e10 5.45e10 1.53e10
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarise(mean_grossmargin_percent = mean(gp / revenue) * 100,
median_grossmargin_percent = median(gp / revenue) * 100,
min_grossmargin_percent = min(gp / revenue) * 100,
max_grossmargin_percent = max(gp / revenue) * 100)
# A tibble: 9 x 5
industry mean_grossmargi… median_grossmar… min_grossmargin…
* <chr> <dbl> <dbl> <dbl>
1 Biotech… 92.5 92.7 81.7
2 Diagnos… 50.5 52.7 28.0
3 Drug Ma… 75.4 76.4 36.8
4 Drug Ma… 47.9 42.6 34.3
5 Healthc… 20.5 19.6 10.0
6 Medical… 55.9 37.4 28.1
7 Medical… 70.8 72.0 53.2
8 Medical… 10.4 5.38 2.49
9 Medical… 53.9 52.8 40.5
# … with 1 more variable: max_grossmargin_percent <dbl>
mean_grossmargin_percent for the industry Medical Devices is 70.78%
median_grossmargin_percent for the industry Medical Devices is 71.98%
min_grossmargin_percent for the industry Medical Devices is 53.20%
max_grossmargin_percent for the industry Medical Devices is 84.34%
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker ILMN from health_cos
and assign to the variable health_cos_subject
health_cos_subset <- health_cos %>%
filter(ticker == "ILMN")
health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illu… 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illu… 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illu… 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illu… 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illu… 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illu… 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illu… 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illu… 3.33e9 2.30e9 6.23e8 826000000 6.96e9 3114000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct. Go to the help pane to see what distinct does
In the console, type ?pull. Go to the help pane to see what pull does
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Illumina Inc"
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
In following chuck
co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company ??? is a member of the ??? group.
glimpse
the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales :: percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018", x = NULL, y = NULL) +
theme_ipsum()
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-15-joining-data"))
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")